Share Email Print

Proceedings Paper

Effects of misalignments in packaging of array-based optical interconnects and processors
Author(s): Anjan K. Ghosh
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Parallel optical interconnections which replace metallic transmission lines with optical fibers or free space channels pro-vide high throughput, easy system integration, and low latency. These systems are used in making multiprocessor based supercomputers, telecommunication exchange switches and terminals, optical information processors and computers. A first-order model for the decrease in coupling efficiency between elements of two linear arrays of a free-space, parallel optical interconnect owing to misalignments or offsets in packaging is developed. Such an array interconnect consists of an array of optical sources, such as, optical fibers or VCSELs and an array of photo-receptors, such as, optical fibers, micromirrors or photodetectors. The coupling efficiency between source and receptor elements is modeled in terms of the sizes of the array elements, inter-element spacing and distances. The coupling efficiency is subject to degrading in-fluence of six varieties of random offsets, which may occur during the alignment, and fixing of the two arrays in a pack-age. We then determine first order approximations of the effects of these offsets. Our paper presents simple analytical formulas useful for a quick design of array-based parallel optical system packages and estimation of overall system per-formances. The formulas developed are useful for design and packaging of any optoelectronic processing system.

Paper Details

Date Published: 23 October 2003
PDF: 11 pages
Proc. SPIE 5202, Optical Information Systems, (23 October 2003); doi: 10.1117/12.505136
Show Author Affiliations
Anjan K. Ghosh, Indian Institute of Technology Kanpur (India)

Published in SPIE Proceedings Vol. 5202:
Optical Information Systems
Bahram Javidi; Demetri Psaltis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?