Share Email Print

Proceedings Paper

Density-based unsupervised classification for spherical objects
Author(s): Shangrong Deng; Kai Qian; Chih-Cheng Hung
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Human interpreters are very sensitive to spatial information in supervised classification. A well-known isodata algorithm in unsupervised classification requires many parameters to be set by human being. Some other unsupervised algorithm focuses on spectral information, but spatial information is lost in the process. Biased sampling is one good approach to get some information about the global structure. For local structures, many techniques have been used. For example similarity and local density are discussed in many papers. In biased sampling, images are divided into many l x l patches and a sample pixel is selected from each patch. Similarity at a point p, denoted by sim(p), measures the change of gray level between point p and its neighborhood N(p). In this article we introduce a method to use biased sampling to combine spectral and spatial information. We use similarity and local popularity in selecting sample points to get better results. To use similarity (sim(p)≤δ), one must determine δ. One way is to make it adapted such that a sample point can be selected from each patch. Here after normalization, we choose a sample point with a minimum value of [equation] for some positive numbers α and β. There is no precondition for δ needed and the selected pixel is a better representative, especially near the border of an object. Kernel estimators are employed to obtain smooth density approximation before final classification. Some experiments have been conducted using the proposed methods and the results are satisfactory.

Paper Details

Date Published: 30 December 2003
PDF: 8 pages
Proc. SPIE 5200, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation VI, (30 December 2003); doi: 10.1117/12.505070
Show Author Affiliations
Shangrong Deng, Southern Polytechnic State Univ. (United States)
Kai Qian, Southern Polytechnic State Univ. (United States)
Chih-Cheng Hung, Southern Polytechnic State Univ. (United States)

Published in SPIE Proceedings Vol. 5200:
Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation VI
Bruno Bosacchi; David B. Fogel; James C. Bezdek, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?