Share Email Print

Proceedings Paper

Spatial polarimetric time-frequency distributions and applications to direction-of-arrival estimation
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Time-frequency distributions (TFDs) have evolved to be a powerful technique for nonstationary signal analysis and synthesis. With the use of a multi-sensor array, spatial time-frequency distributions (STFDs) have been developed and successfully applied to high-resolution direction-of-arrival (DOA) estimation and blind recovery of the source waveforms. In this paper, the polarimetric dimension is introduced to the STFDs resulting in the spatial polarimetric time-frequency distributions (SPTFDs) as a platform for the processing of non-stationary polarized signals. In the SPTFD platform, polarized signals are decomposed (projected) into two orthogonal polarization components, such as horizontal and vertical, and later processed in a manner where their polarization characteristics are exploited. This empowers the STFDs with additional degrees of freedom and improves the robustness of the signal and noise subspaces, and therefore, serving to enhance DOA estimation, signal recovery, and source separation performance. To demonstrate the advantages of the SPTFDs, the polarimetric time-frequency MUSIC (PTF-MUSIC) method for DOA estimation is proposed based on the SPTFD platform and is shown to outperform the time-frequency, polarimetric, and conventional MUSIC methods.

Paper Details

Date Published: 24 December 2003
PDF: 11 pages
Proc. SPIE 5205, Advanced Signal Processing Algorithms, Architectures, and Implementations XIII, (24 December 2003); doi: 10.1117/12.504886
Show Author Affiliations
Yimin Zhang, Villanova Univ. (United States)
Moeness G Amin, Villanova Univ. (United States)
Baha A. Obeidat, Villanova Univ. (United States)

Published in SPIE Proceedings Vol. 5205:
Advanced Signal Processing Algorithms, Architectures, and Implementations XIII
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?