Share Email Print

Proceedings Paper

Adaptive nulling: a new enabling technology for interferometric exoplanet detection
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Deep, stable nulling of starlight requires careful control of the amplitudes and phases of the beams that are being combined. The detection of earth-like planets using the interferometer architectures currently being considered for the Terrestrial Planet Finder mission require that the E-field amplitudes are balanced at the level of ~ 0.1%, and the phases are controlled at the level of 1 mrad (corresponding to ~ 1.5 nm for a wavelength of 10 μm). These conditions must be met simultaneously at all wavelengths across the science band, and for both polarization states, imposing unrealistic tolerances on the symmetry between the optical beamtrains. We introduce the concept of a compensator that is inserted into the beamtrain, which can adaptively correct for the mismatches across the spectrum, enabling deep nulls with realistic, imperfect optics. The design presented uses a deformable mirror to adjust the amplitude and phase of each beam as an arbitrary function of wavelength and polarization. A proof-of-concept experiment will be conducted at visible / near-IR wavelengths, followed by a system operating in the Mid-IR band.

Paper Details

Date Published: 19 November 2003
PDF: 10 pages
Proc. SPIE 5170, Techniques and Instrumentation for Detection of Exoplanets, (19 November 2003);
Show Author Affiliations
Oliver P. Lay, Jet Propulsion Lab. (United States)
Muthu Jeganathan, Jet Propulsion Lab. (United States)
Robert Peters, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 5170:
Techniques and Instrumentation for Detection of Exoplanets
Daniel R. Coulter, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?