Share Email Print

Proceedings Paper

Neural network model of dynamic form perception: implications of retinal persistence and extraretinal sharpening for the perception of moving boundaries
Author(s): Haluk Ogmen
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

While temporal properties of the visual system have been the subject of extensive research in psychology, many computational theories are based on steady-state behavior. For example, Marr's theory requires early measurements to be instantaneous. Furthermore, optimizational type approaches to perception are designed around properties of equilibria, and very little attention is devoted to the relevance of trajectories to perceptual experience. Electrophysiological findings however show that visual neurons such as retinal ganglion cells possess strong transient components. Therefore, a fundamental issue in perceptual sciences is the understanding of the relevance of these transient components to visual perception. This study claims that adaptive, nonmonotonic transient properties of early visual units are crucial components in visual processing. An extra-retinal feedback on-center off-surround anatomy is proposed to sharpen the 'blurred output' from the retinal level. Based on theoretical studies of pattern transformation properties of recurrent networks for sustained inputs we propose a global model (including retina and extra-retinal areas) of visual processing where a reset from transient ganglion cells of the retina prevent smearing for moving images. The model provides a theoretical link between hyperacuity (achieved by denser extra-retinal packing and nonlinear contrast enhancement) and visual masking (resulting from inter-layer and intra-channel inhibition mechanisms).

Paper Details

Date Published: 1 November 1991
PDF: 10 pages
Proc. SPIE 1606, Visual Communications and Image Processing '91: Image Processing, (1 November 1991); doi: 10.1117/12.50326
Show Author Affiliations
Haluk Ogmen, Univ. of Houston (United States)

Published in SPIE Proceedings Vol. 1606:
Visual Communications and Image Processing '91: Image Processing
Kou-Hu Tzou; Toshio Koga, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?