Share Email Print

Proceedings Paper

Fully scalable 3D overcomplete wavelet video coding using adaptive motion-compensated temporal filtering
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, we present a fully scalable 3-D overcomplete wavelet video coder that employs a new and highly efficient 3-D lifting structure for adaptive motion compensated temporal filtering (MCTF). Unlike the conventional interframe wavelet video techniques that apply MCTF on the spatial domain video data and then encode the resulting temporally filtered frames using critical sampled wavelet transforms, the scheme proposed in this paper performs first the spatial domain wavelet transform and subsequently applies MCTF for each wavelet band. To overcome the inefficiency of motion estimation in the wavelet domain, the low band shifting method (LBS) is used at both the encoder and decoder to generate an overcomplete representation of the temporal reference frames. A novel interleaving algorithm for the overcomplete wavelet coefficient is proposed that enables optimal sub-pixel accuracy motion estimation implementations. Furthermore, to achieve arbitrary accuracy motion estimation and compensation in the overcomplete wavelet domain with perfect reconstruction, a novel 3-D lifting structure is also introduced. Simulation results shows that the proposed fully scalable 3-D overcomplete wavelet video coder has comparable or better performance (up to 0.5dB) than the previously proposed interframe wavelet coders under the same coding conditions. Several techniques that can further improve the performance of the proposed overcomplete wavelet coding scheme are also discussed.

Paper Details

Date Published: 23 June 2003
PDF: 12 pages
Proc. SPIE 5150, Visual Communications and Image Processing 2003, (23 June 2003); doi: 10.1117/12.502265
Show Author Affiliations
Jong Chul Ye, Philips Research USA (United States)
Mihaela van der Schaar, Philips Research USA (United States)

Published in SPIE Proceedings Vol. 5150:
Visual Communications and Image Processing 2003
Touradj Ebrahimi; Thomas Sikora, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?