Share Email Print

Proceedings Paper

Acoustic characterization of metal/polymer membrane enclosures
Author(s): Thomas P. Schuman; Ayse Beyaz; Yan Liu; Matthew J. O'Keefe
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Polyaniline, an inherently conducting polymer, was synthesized and fabricated as an acoustic membrane enclosure for the packaging of a MEMS-based acoustic microsensor. The packaging was designed to minimize environmental ambient impact, including dust and excess moisture, but maximize microphone performance. Free-standing films of emeraldine base polyaniline were doped with metal salts of aluminum acetoacetate, iron acetoacetate, copper acetoacetate, or titanium ethoxide. Polymer-metal hybrid compositions were analyzed by scanning electron microscopy (SEM) and deconvoluting X-ray photoelectron spectra (XPS) to discern interactions between metal atoms and polyaniline. Mechanical properties of the material, specifically the glass transition temperature and elastic and imaginary moduli, were measured by dynamic mechanical analysis (DMA) as a function of metal type, mechanical excitation frequency and temperature. The hybrid materials were then formed and shaped as flat membranes or as shaped domes of variable radii of curvature,, including hemispherical. Acoustic transmission properties of metal-doped planar and dome-shaped membranes were measured by insertion loss as a function of acoustic frequency between 100 to 2000 Hz in a plane wave tube. Results indicated an effect of metal type upon incorporation into polyaniline, which showed increases in mechanical stiffness and acoustic resonance frequency consistent with increased metal-polymer interaction. Acoustic performance was compared to a numerical model of sound transmission through hemispherical domes as a function of sound frequency, membrane structure, modulus of elasticity, thickness, and source angle of incidence.

Paper Details

Date Published: 18 September 2003
PDF: 11 pages
Proc. SPIE 5090, Unattended Ground Sensor Technologies and Applications V, (18 September 2003); doi: 10.1117/12.499731
Show Author Affiliations
Thomas P. Schuman, Univ. of Missouri-Rolla (United States)
Ayse Beyaz, Univ. of Missouri-Rolla (United States)
Yan Liu, Univ. of Missouri-Rolla (United States)
Matthew J. O'Keefe, Univ. of Missouri-Rolla (United States)

Published in SPIE Proceedings Vol. 5090:
Unattended Ground Sensor Technologies and Applications V
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?