Share Email Print

Proceedings Paper

Backward consistency concept and a new decomposition of the error propagation dynamics in RLS algorithms
Author(s): Dirk T. M. Slock
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We present here some preliminary results on a new approach for the analysis of the propagation of round-off errors in recursive algorithms. This approach is based on the concept of backward consistency. In general, this concept leads to a decomposition of the state space of the algorithm, and, in fact, to a manifold. This manifold is the set of state values that are backward consistent. Perturbations within the manifold can be interpreted as perturbations on the input data. Hence, the error propagation on the manifold corresponds exactly (without averaging or even linearization) to the propagation of the effect of a perturbation of the input data at some point in time on the state of the algorithm at future times. In this paper, we apply these ideas to the Kalman filter and its various derivatives. In particular, we consider the conventional Kalman filter, some minor variations of it, and its square-root forms. Next we consider the Chandrasekhar equations, which apply to time-invariant filtering problems. Recursive least-squares parameter (RLS) estimation is a special case of Kalman filtering and, hence, the previous results also apply to the RLS algorithms. We shall furthermore consider in detail two groups of fast RLS algorithms: the fast transversal filter (FTF) algorithms and the fast lattice fast QR (FLA/FQR) RLS algorithms.

Paper Details

Date Published: 1 December 1991
PDF: 11 pages
Proc. SPIE 1565, Adaptive Signal Processing, (1 December 1991); doi: 10.1117/12.49805
Show Author Affiliations
Dirk T. M. Slock, Philips Research Lab. (Belgium)

Published in SPIE Proceedings Vol. 1565:
Adaptive Signal Processing
Simon Haykin, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?