Share Email Print

Proceedings Paper

Multiagent intelligent systems
Author(s): Lee S. Krause; Christopher Dean; Lynn A. Lehman
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper will discuss a simulation approach based upon a family of agent-based models. As the demands placed upon simulation technology by such applications as Effects Based Operations (EBO), evaluations of indicators and warnings surrounding homeland defense and commercial demands such financial risk management current single thread based simulations will continue to show serious deficiencies. The types of “what if” analysis required to support these types of applications, demand rapidly re-configurable approaches capable of aggregating large models incorporating multiple viewpoints. The use of agent technology promises to provide a broad spectrum of models incorporating differing viewpoints through a synthesis of a collection of models. Each model would provide estimates to the overall scenario based upon their particular measure or aspect. An agent framework, denoted as the “family” would provide a common ontology in support of differing aspects of the scenario. This approach permits the future of modeling to change from viewing the problem as a single thread simulation, to take into account multiple viewpoints from different models. Even as models are updated or replaced the agent approach permits rapid inclusion in new or modified simulations. In this approach a variety of low and high-resolution information and its synthesis requires a family of models. Each agent “publishes” its support for a given measure and each model provides their own estimates on the scenario based upon their particular measure or aspect. If more than one agent provides the same measure (e.g. cognitive) then the results from these agents are combined to form an aggregate measure response. The objective would be to inform and help calibrate a qualitative model, rather than merely to present highly aggregated statistical information. As each result is processed, the next action can then be determined. This is done by a top-level decision system that communicates to the family at the ontology level without any specific understanding of the processes (or model) behind each agent. The increasingly complex demands upon simulation for the necessity to incorporate the breadth and depth of influencing factors makes a family of agent based models a promising solution. This paper will discuss that solution with syntax and semantics necessary to support the approach.

Paper Details

Date Published: 4 September 2003
PDF: 8 pages
Proc. SPIE 5091, Enabling Technologies for Simulation Science VII, (4 September 2003); doi: 10.1117/12.497955
Show Author Affiliations
Lee S. Krause, Securboration (United States)
Christopher Dean, Securboration (United States)
Lynn A. Lehman, Securboration (United States)

Published in SPIE Proceedings Vol. 5091:
Enabling Technologies for Simulation Science VII
Alex F. Sisti; Dawn A. Trevisani, Editor(s)

© SPIE. Terms of Use
Back to Top