Share Email Print

Proceedings Paper

Quantum noise and probabilistic teleportation
Author(s): Arun K. Pati; P. Agrawal
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the presence of quantum noise a perfect EPR pair becomes imperfect and may be described by a non-maximally entangled pair. With non-maximally entangled state as a resource one cannot teleport an unknown state faithfully. Typically, one has to perform either local filtering or entanglement concentration and then follow the standard teleportation method. In this talk, we will present a new protocol that uses neither local filtering nor entanglement concentration to teleport an unknown state. We show that using non-maximally entangled measurements one can teleport an unknown state with unit fidelity but with a probability that is less than unit. Ours is a generalized quantum teleportation protocol that encompasses probabilistic as well as deterministic teleportation scenarios. We describe the probabilistic teleportation in terms of quantum operations and give explicit expressions for success and failure probabilities. This may have practical value in real experiments, and even may be tested with current technology.

Paper Details

Date Published: 16 May 2003
PDF: 12 pages
Proc. SPIE 5111, Fluctuations and Noise in Photonics and Quantum Optics, (16 May 2003); doi: 10.1117/12.497241
Show Author Affiliations
Arun K. Pati, Institute of Physics (India)
P. Agrawal, Institute of Physics (India)

Published in SPIE Proceedings Vol. 5111:
Fluctuations and Noise in Photonics and Quantum Optics
Derek Abbott; Jeffrey H. Shapiro; Yoshihisa Yamamoto, Editor(s)

© SPIE. Terms of Use
Back to Top