Share Email Print

Proceedings Paper

Real-time tripwire detection on a robotic testbed
Author(s): James M. Keller; Majorie A. Skubic; Paul D. Gader; Tsaipei Wang; Robert Luke
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Detection of tripwires is an active area of investigation. Researchers at the University of Missouri and the University of Florida are jointly pursuing numerous approaches to detect both the trip wires and the mines to which they are connected. Utilization of robotic vehicles capable of performing this task is one of the goals of this project. In this paper, we discuss issues related to the embedding of current versions of our tripwire detection algorithms into a small and inexpensive robot testbed for real-time experimentation. The robot is based a simple remote-controlled truck where the remote control unit has been replaced by a standard microcontroller. Sensors are added to assist navigation tasks, handled by the microcontroller, and the tripwire detection algorithms are implemented on a laptop PC with video input. There are several sophisticated algorithms that are being investigated for robust tripwire detection. The current detection algorithm that has been pruned down to run in real-time on the robotic platform consists of a Hough transform to find candidate lines followed by post-processing to score the candidate lines for the likelihood that they correspond to a trip wire. Upon detection, the robot is given a command to stop. Results of several experiments both indoors and outside in a variety of settings are described and analyzed.

Paper Details

Date Published: 11 September 2003
PDF: 11 pages
Proc. SPIE 5089, Detection and Remediation Technologies for Mines and Minelike Targets VIII, (11 September 2003); doi: 10.1117/12.487905
Show Author Affiliations
James M. Keller, Univ. of Missouri-Columbia (United States)
Majorie A. Skubic, Univ. of Missouri-Columbia (United States)
Paul D. Gader, Univ. of Florida (United States)
Tsaipei Wang, Univ. of Missouri-Columbia (United States)
Robert Luke, Univ. of Missouri-Columbia (United States)

Published in SPIE Proceedings Vol. 5089:
Detection and Remediation Technologies for Mines and Minelike Targets VIII
Russell S. Harmon; John H. Holloway Jr.; J. T. Broach, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?