Share Email Print

Proceedings Paper

Correcting GPS measurement errors induced by system motion over uneven terrain
Author(s): Stacy L. Tantum; Leslie M. Collins; Nagi Khadr; Bruce J. Barrow
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Many cart- and vehicular-based UXO detection systems employ GPS receivers to accurately determine the system's position. However, the unevenness of the terrain often causes the system to tilt during the data collection, introducing errors in the GPS measurements. In this paper, two approaches are considered to correct the errors in the GPS measurements caused by the tilting of the system; low-pass filtering and adaptive filtering using a hidden Markov model (HMM). The low-pass filter smooths the data collection path recorded by the GPS receiver. Although this filter does not explicitly model the system motion, it does remove dramatic, and unrealistic, jumps in the GPS measurements. In contrast, the movement of the system can be explicitly modeled by an HMM. The HMM characterizes the cart motion so that the subsequent filtering is appropriate for the type of motion encountered. The error correction techniques are first applied to simulated data, in which both the sources of error and the ground truth are known so that the performance of the algorithms can be compared. The algorithms are then applied to measured data collected with a cart-based system to evaluate the robustness of their performance.

Paper Details

Date Published: 11 September 2003
PDF: 11 pages
Proc. SPIE 5089, Detection and Remediation Technologies for Mines and Minelike Targets VIII, (11 September 2003);
Show Author Affiliations
Stacy L. Tantum, Duke Univ. (United States)
Leslie M. Collins, Duke Univ. (United States)
Nagi Khadr, AETC, Inc. (United States)
Bruce J. Barrow, AETC, Inc. (United States)

Published in SPIE Proceedings Vol. 5089:
Detection and Remediation Technologies for Mines and Minelike Targets VIII
Russell S. Harmon; John H. Holloway Jr.; J. T. Broach, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?