Share Email Print

Proceedings Paper

Optimal multisensor decision fusion of mine detection algorithms
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Numerous detection algorithms, using various sensor modalities, have been developed for the detection of mines in cluttered and noisy backgrounds. The performance for each detection algorithm is typically reported in terms of the Receiver Operating Characteristic (ROC), which is a plot of the probability of detection versus false alarm as a function of the threshold setting on the output decision variable of each algorithm. In this paper we present multi-sensor decision fusion algorithms that combine the local decisions of existing detection algorithms for different sensors. This offers, in certain situations, an expedient, attractive and much simpler alternative to "starting over" with the redesign of a new algorithm which fuses multiple sensors at the data level. The goal in our multi-sensor decision fusion approach is to exploit complimentary strengths of existing multi-sensor algorithms so as to achieve performance (ROC) that exceeds the performance of any sensor algorithm operating in isolation. Our approach to multi-sensor decision fusion is based on optimal signal detection theory, using the likelihood ratio. We consider the optimal fusion of local decisions for two sensors, GPR (ground penetrating radar) and MD (metal detector). A new robust algorithm for decision fusion is presented that addresses the problem that the statistics of the training data is not likely to exactly match the statistics of the test data. ROC's are presented and compared for real data.

Paper Details

Date Published: 11 September 2003
PDF: 9 pages
Proc. SPIE 5089, Detection and Remediation Technologies for Mines and Minelike Targets VIII, (11 September 2003); doi: 10.1117/12.486834
Show Author Affiliations
Yuwei Liao, Duke Univ. (United States)
Loren W. Nolte, Duke Univ. (United States)
Leslie M. Collins, Duke Univ. (United States)

Published in SPIE Proceedings Vol. 5089:
Detection and Remediation Technologies for Mines and Minelike Targets VIII
Russell S. Harmon; John H. Holloway Jr.; J. T. Broach, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?