Share Email Print

Proceedings Paper

Precision microfabrication with Q-switched CO2 lasers
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper presents a new CO2 laser technology for precision microfabrication applications. The laser produces short (microsecond) pulses at very high pulse repetition frequencies (PRFs). In contrast, most commercial CO2-laser micromachining applications employ one of two type of CO2 lasers: RF-excited with external pulse modulation, and TEA lasers. The laser technology presented here produces pulses sharing some of the characteristics of the TEA CO2 laser, but is capable of delivering them at much higher PRFs (20-100 kHz). Microfabrication applications to date are primarily microdrilling in common electronic circuit board and IC packaging materials, including unreinforced, glass-fiber reinforced, and particle-filled epoxies. These materials are processed using pulse energies lower than those generally used by conventional CO2 laser designs, and at speeds typically 1.5 to three times as fast as achieved by conventional CO2 laser drills.

Paper Details

Date Published: 19 February 2003
PDF: 6 pages
Proc. SPIE 4830, Third International Symposium on Laser Precision Microfabrication, (19 February 2003); doi: 10.1117/12.486600
Show Author Affiliations
Corey M. Dunsky, Electro Scientific Industries, Inc. (United States)
Hisashi Matsumoto, Electro Scientific Industries, Inc. (United States)

Published in SPIE Proceedings Vol. 4830:
Third International Symposium on Laser Precision Microfabrication
Isamu Miyamoto; Kojiro F. Kobayashi; Koji Sugioka; Reinhart Poprawe; Henry Helvajian, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?