Share Email Print

Proceedings Paper

Application-specific methods for creating simulation masks
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Lithography simulation is being used in a wide range of applications to help lithographers solve an equally wide range of problems. A necessary input to optical lithography simulation is the specification of the mask transmittance function, m(x,y), which forms the basis for the aerial image calculation. Various methods are used to specify m(x,y). The choice of method depends, in part, on the capabilities of the simulation software package and the available information. To maximize effectiveness, efficiency and accuracy, users should choose a method of specifying m(x,y) which considers the requirements of their application. In many cases, a simple expression for m(x,y) is all that is needed. In other cases, finer detail is desirable or even necessary. This paper reviews many techniques to generate m(x,y) for the PROLITH family of lithography simulators and presents current research for the defect printability application.

Paper Details

Date Published: 26 June 2003
PDF: 12 pages
Proc. SPIE 5040, Optical Microlithography XVI, (26 June 2003); doi: 10.1117/12.485536
Show Author Affiliations
William B. Howard, KLA-Tencor Corp. (United States)
Darren Taylor, Photronics Inc. (United States)

Published in SPIE Proceedings Vol. 5040:
Optical Microlithography XVI
Anthony Yen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?