Share Email Print

Proceedings Paper

Illumination pupil fill measurement and analysis and its application in scanner V-H bias characterization for 130-nm node and beyond
Author(s): Gary Zhang; Changan Wang; Colin L. Tan; John Robert Ilzhoefer; Chris Atkinson; Stephen P. Renwick; Steve D. Slonaker; David Godfrey; Catherine H. Fruga
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A detailed characterization of across chip line width variation (ACLV) has been carried out on the latest Nikon scanners with a combination of advanced metrology techniques in Texas Instruments, including scatterometer-based image field and CD fingerprinting, lens aberrations measurement using a Litel in-situ interferometer, and illumination source imaging with a pin-hole camera. This paper describes the application of the above techniques in our investigation of the root causes for pattern CD bias between vertical and horizontal features. Illumination source radiance distribution is found sometimes to have a significant impact on V-H bias and the final overall ACLV on production wafers. Examples are given to demonstrate a comprehensive methodology that is used to quantitatively break down the overall CD errors and correlate them back to the basic optical and imaging components. It is shown through pupil-gram analysis that the ellipticity in partial coherence is typically within 1+/-1% for conventional illuminations settings on the advanced Nikon scanners while the uneven radiance distribution across the source plays a major role in V-H pattern CD bias. For scanners with low and uniform lens coma aberrations, the V-H bias after removing the contribution from image field errors is found to follow a linear relationship with the source radiance non-uniformity described also in terms of ellipticity. It is shown that radiance ellipticity is a bigger concern for off-axis illuminators. Tighter design rules patterned with off-axis illumination are more vulnerable to source radiance non-uniformity as well as lens aberrations. Illuminator induced V-H bias across the slit is compared to the signature caused by lens aberrations specifically uneven x,y-coma. Implications to exposure tool specification, control, and matching are further explored through experiments and lithography simulation for the current 130nm production and the future technology nodes in development.

Paper Details

Date Published: 26 June 2003
PDF: 12 pages
Proc. SPIE 5040, Optical Microlithography XVI, (26 June 2003); doi: 10.1117/12.485352
Show Author Affiliations
Gary Zhang, Texas Instruments Inc. (United States)
Changan Wang, Texas Instruments Inc. (United States)
Colin L. Tan, Texas Instruments Inc. (United States)
John Robert Ilzhoefer, Texas Instruments Inc. (United States)
Chris Atkinson, Texas Instruments Inc. (United States)
Stephen P. Renwick, Nikon Precision Inc. (United States)
Steve D. Slonaker, Nikon Precision Inc. (United States)
David Godfrey, Nikon Precision Inc. (United States)
Catherine H. Fruga, Nikon Precision Inc. (United States)

Published in SPIE Proceedings Vol. 5040:
Optical Microlithography XVI
Anthony Yen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?