Share Email Print

Proceedings Paper

Recent advances in thiophene-based molecular actuators
Author(s): Patrick A. Anquetil; Hsiao-hua Yu; John David Madden; Timothy M. Swager; Ian Warwick Hunter
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A new class of molecular actuators where bulk actuation mechanisms such as ion intercalation are enhanced by controllable single molecule conformational rearrangements offers great promise to exhibit large active strains at moderate stresses. Initial activation of poly(quarterthiophene) based molecular muscles, for example, show active strains in the order of 20%. Molecular rearrangements in these conjugated polymers are believed to be driven by the formation of pi-dimers (e.g. the tendency of pi orbitals to align due to Pauli’s exclusion principle) upon oxidation of the material creating thermodynamically stable molecular aggregates. Such thiophene based polymers, however, suffer from being brittle and difficult to handle. Polymer composites of the active polymer with a sulfated polymeric anion were therefore created and studied to increase the mechanical robustness of the films. This additional polyelectrolyte is a Sulfated Poly-Beta-Hydroxy Ether (S-PHE) designed to form a supporting elastic matrix for the new contractile compounds. Co-deposition of the polyanion with the conducting polymer material provides an elastic mechanical support to the relatively stiff conjugated polymer molecules, thus reducing film brittleness. The active properties of such poly(quarterthiophene)/S-PHE polymer actuator composites based on intrinsic molecular contractile units are presented and discussed.

Paper Details

Date Published: 28 July 2003
PDF: 12 pages
Proc. SPIE 5051, Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), (28 July 2003); doi: 10.1117/12.484412
Show Author Affiliations
Patrick A. Anquetil, Massachusetts Institute of Technology (United States)
Hsiao-hua Yu, Massachusetts Institute of Technology (United States)
John David Madden, Univ. of British Columbia (Canada)
Timothy M. Swager, Massachusetts Institute of Technology (United States)
Ian Warwick Hunter, Massachusetts Institute of Technology (United States)

Published in SPIE Proceedings Vol. 5051:
Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?