Share Email Print

Proceedings Paper

Carbon nanotubes as actuators in smart structures
Author(s): Hans Peter Monner; Stefan Muehle; Peter Wierach
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Carbon Nanotubes have diameters in nanometer scale, are up to tens of microns long and can be single- or multi-walled (SWNT and MWNT). Compared with carbon fibers, which typically have a Young's modulus of up to 750 GPa, the elastic modulus of Carbon Nanotubes has been measured to be approximately 1-2 TPa. The strength of Carbon Nanotubes has been reported to be about two order of magnitude higher than current high strength carbon fibers. Additionally especially SWNT show excellent actuator behaviour. Electromechanical actuators based on sheets of SWNT show to generate higher stress than natural muscles and higher strains than ferroelectrics like PZT. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Thus, this paper will give a brief overview of the current activities within this field and show some recent results of the Carbon Nanotube actuator development at the DLR-Institute of Structural Mechanic suggesting that optimized SWNT sheets may eventually provide substantially higher work densities per cycle than any previously known material.

Paper Details

Date Published: 13 August 2003
PDF: 9 pages
Proc. SPIE 5053, Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics, (13 August 2003);
Show Author Affiliations
Hans Peter Monner, DLR (Germany)
Stefan Muehle, DLR (Germany)
Peter Wierach, DLR (Germany)

Published in SPIE Proceedings Vol. 5053:
Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics
Dimitris C. Lagoudas, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?