Share Email Print

Proceedings Paper

Dual-function adaptive optics to mitigate atmospheric effects in a laser communication system
Author(s): Robert K. Tyson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The degrading effects of the atmosphere on a laser communication link can be partially removed with a combination of conventional low-order adaptive optics and other adaptive techniques. Recent experiments performed at UNC Charlotte indicate a measureable reduction in the bit-error rate for a laser communication system by correcting for the phase effects of propagation that are manifested in scintillation at the receiver. Further implementation of an adaptive field-of-view can help to reduce the effect of wide-angle scattering that appears in the extinction ratio. The theory and predictions of the combined adaptive techniques will be discussed along with a description and results of a laboratory experiment replicating a monostatic 1.55 μm laser propagation with a cooperative wavefront beacon at the receiver. The result is scaled to represent an actual propagation of 6 km under moderately high scintillation conditions.

Paper Details

Date Published: 30 April 2003
PDF: 8 pages
Proc. SPIE 4976, Atmospheric Propagation, (30 April 2003); doi: 10.1117/12.483806
Show Author Affiliations
Robert K. Tyson, Univ. of North Carolina at Charlotte (United States)

Published in SPIE Proceedings Vol. 4976:
Atmospheric Propagation
Cynthia Y. Young; John S. Stryjewski, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?