Share Email Print
cover

Proceedings Paper

Unstable-unit tensegrity plate: modeling and design
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A new topology for a prestressed tensegrity plate, the unstable-unit tensegrity plate (UUTP), is introduced, together with a detailed algorithm for its design. The plate is a truss made of strings (flexible elements) and bars (rigid elements), which are loaded in tension and compression, respectively, where bars do not touch each other. Given the outline dimensions of the desired plate, and the number of bars along the plate's width and length, the algorithm solves for the nodes' positions and the prestress forces that make a plate in equilibrium. This is done by solving a non-linear matrix equation via Newton's method. This equation reflects static equilibrium conditions. We've designed several such plates, proving the feasibility of the proposed topology and the effectiveness of its design algorithm. Two such plates are characterized in detail, both statically and dynamically (via simulation). The proposed algorithm may be extended to solve for other tensegrity structures having different topologies and/or different shapes. The UUTP may be used as a building block of many types of structures, both uncontrolled and controlled, either large-scale or miniature-scale.

Paper Details

Date Published: 5 August 2003
PDF: 10 pages
Proc. SPIE 5056, Smart Structures and Materials 2003: Smart Structures and Integrated Systems, (5 August 2003); doi: 10.1117/12.483506
Show Author Affiliations
Ron Zaslavsky, Technion--Israel Institute of Technology (Israel)
Mauricio C. de Oliveira, Univ. Estadual de Campinas (Brazil)
Robert E. Skelton, Univ. of California, San Diego (United States)


Published in SPIE Proceedings Vol. 5056:
Smart Structures and Materials 2003: Smart Structures and Integrated Systems
Amr M. Baz, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray