Share Email Print

Proceedings Paper

Q-switched Er:YAG radiation transmission through an oxide glass fiber for medical applications
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the last few years, there has been an increasing interest for the 3 m laser radiation in various medical applications, as this wavelength is strongly absorbed by the water and the other components of soft and hard tissue. An intensive development effort is going on throughout the world, in order to develop reliable lasers emitting in the 3 m wavelength range. Our laser development effort with the Q-switched Er:YAG laser is briefly described in this article. Additionally for medical applications there is a great demand for good flexible delivery systems, in the mid-IR wavelength region. In this work the radiation transmission of a Q-switched Er:YAG laser, emitting at 2.94 m, through high power (HP) oxide glass fibers of 450 ?m core diameter was studied. Attenuation measurements were obtained as a function of the laser energy input and as a function of curvature, at 90o, 180o and 360o bending angle. The output beam quality was studied using a beam profiler. Experiments with the same delivery system transmitting free-running Er:YAG laser radiation, were performed for comparison. The results are promising for the delivery of Q-switched Er:YAG laser radiation, as the fibers exhibited attenuation of 0.7 dB/m, and no damage of them was observed.

Paper Details

Date Published: 12 September 2002
PDF: 8 pages
Proc. SPIE 4916, Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, (12 September 2002); doi: 10.1117/12.482999
Show Author Affiliations
Dimitris N. Papadopoulos, National Technical Univ. of Athens (Greece)
Eirini Papagiakoumou, National Technical Univ. of Athens (Greece)
Alexander A. Serafetinides, National Technical Univ. of Athens (Greece)

Published in SPIE Proceedings Vol. 4916:
Optics in Health Care and Biomedical Optics: Diagnostics and Treatment
Britton Chance; Mingzhe Chen; Gilwon Yoon, Editor(s)

© SPIE. Terms of Use
Back to Top