Share Email Print

Proceedings Paper

New method for tissue indentification: resonance fluorescence spectroscopy
Author(s): Walter Neu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The method proposed in this paper is based on the detection of resonantly enhanced fluorescence emission induced by a tunable dye laser. First test on anorganic samples exposed to air and to saline solution demonstrate the potential of this technique. A XeCl excimer-laser ((lambda) equals308 nm) pulse, guided by quartz fibers, causes an efficient ablation of the irradiated samples. The specific species to be detected in the ablation plume determines the wavelength of the narrow-band dye-laser radiation. Preferably, it is set to a strong transition of the selected ablation product. Taking into account the formation of the plume, the dye-laser pulse is applied with a certain delay in order to excite resonantly the chosen species in the plume. The resulting resonance fluorescence is then guided by optical fibers to an OMA system. Compared to the broad-band excimer-laser-indiced fluorescence during the ablation process, the resonance fluorescence signal shows a distinct and easily detectable sharp peak. The signal-to-background ratio is improved by one order of magnitude. The achieved increase in sensitivity as well as selectivity is for the benefit of a reliable identification of ablated tissue.

Paper Details

Date Published: 1 November 1991
PDF: 8 pages
Proc. SPIE 1525, Future Trends in Biomedical Applications of Lasers, (1 November 1991); doi: 10.1117/12.48212
Show Author Affiliations
Walter Neu, Laser-Lab. Goettingen e.V. (Germany)

Published in SPIE Proceedings Vol. 1525:
Future Trends in Biomedical Applications of Lasers
Lars Othar Svaasand, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?