Share Email Print

Proceedings Paper

Polymers designed for laser applications: fundamentals and applications
Author(s): Thomas Lippert; Marc Hauer; Claude R. Phipps; Alexander J. Wokaun
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The ablation characteristics of various polymers were studied at low and high fluences. The polymers can be divided into three groups, i.e. polymers containing triazene groups, designed ester groups, and reference polymers, such as polyimide. The polymers containing the photochemically most active group (triazene) exhibit the lowest threshold of ablation (as low as 25 mJ cm-2) and the highest etch rates (e.g. 250 nm/pulse at 100 mJ cm-2), followed by the designed polyesters and then polyimide. Neither the linear nor the effective absorption coefficients reveal a clear influence on the ablation characteristics. The different behavior of polyimide might be explained by a pronounced thermal part in the ablation mechanism. The laser-induced decomposition of the designed polymers was studied by nanosecond interferometry and shadowgraphy. The etching of the triazene polymer starts and ends with a laser pulse, clearly indicating photochemical etching. Shadowgraphy reveals mainly gaseous products and a pronounced shockwave in air. The designed polymers were tested for applications ranging from microoptical elements to polymer fuel for laser plasma thrusters.

Paper Details

Date Published: 13 September 2002
PDF: 9 pages
Proc. SPIE 4760, High-Power Laser Ablation IV, (13 September 2002); doi: 10.1117/12.482044
Show Author Affiliations
Thomas Lippert, Paul Scherrer Institut (Switzerland)
Marc Hauer, Paul Scherrer Institut (Switzerland)
Claude R. Phipps, Photonic Associates (United States)
Alexander J. Wokaun, Paul Scherrer Institut (Switzerland)

Published in SPIE Proceedings Vol. 4760:
High-Power Laser Ablation IV
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top