Share Email Print

Proceedings Paper

Practical strategies for the clinical implementation of matrix inversion tomosynthesis (MITS)
Author(s): Devon J. Godfrey; Amber Rader; James T. Dobbins III
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Digital tomosynthesis is a method that enables the retroactive reconstruction of arbitrary tomographic planes in an object from a finite series of digital projection radiographs, acquired with limited angle tube movement. Conventional tomosynthesis suffers from the presence of blurring artifacts, created by objects located outside of each reconstructed plane. Matrix inversion tomosynthesis (MITS) utilizes known acquisition geometry to solve directly for the unwanted out-of-plane blur artifacts, thus enabling their removal. This paper examines practical strategies for the implementation of MITS in a clinical setting, on a flat-panel fast-readout detector, with the aim of minimizing procedure time and image reconstruction artifacts concurrently. Topics include a comparison of continuous vs. incremental tube motion, the presence of reconstruction artifacts due to error in computing the x-ray tube location, the effect of scrubbing the detector between projections to reduce image retention, and a method for accounting for data that gets projected off the detector. We conclude that MITS is robust enough to be clinically applicable, even under less-than-ideal conditions. Rapid image acquisition with continuous tube movement and no detector scrubbing is clinically desirable for MITS imaging of the chest, where patient motion is a concern. Knowledge of the source-detector geometry can be satisfactorily determined via either a lead fiducial marker placed on the patient, or a tube motion device with sufficient precision and accuracy. Extrapolation of data at the top and bottom of projection images provides excellent amelioration of image truncation artifacts.

Paper Details

Date Published: 5 June 2003
PDF: 12 pages
Proc. SPIE 5030, Medical Imaging 2003: Physics of Medical Imaging, (5 June 2003); doi: 10.1117/12.480352
Show Author Affiliations
Devon J. Godfrey, Duke Univ. (United States)
Amber Rader, GE Medical Systems (United States)
James T. Dobbins III, Duke Univ. (United States)
Duke Univ. Medical Ctr. (United States)

Published in SPIE Proceedings Vol. 5030:
Medical Imaging 2003: Physics of Medical Imaging
Martin J. Yaffe; Larry E. Antonuk, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?