Share Email Print

Proceedings Paper

Analysis of an image-based transducer tracking system for 3D ultrasound
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The use of speckle decorrelation techniques to calculate the displacement of a moving transducer has demonstrated promise. We introduce a technique to estimate distance between image planes without assuming a constant transducer velocity. We developed a theoretical analysis of the uncertainty in estimated plane spacing as a function of speckle size, patch size and the number of planes used for normalization. The best estimates of plane spacing are obtained when the distance between acquired image planes is of the order of half the speckle size. In this region, the uncertainty in estimated plane spacing was < 15% for an 8.1mm (axial) x 9.1mm (lateral) patch, increasing to 33% for an 8.1mm x 1.5mm patch. Patch size is limited to regions of fully developed speckle, and also by brightness gradients in the image. Although brightness gradients seem insignificant on intensity images, they can cause a large bias in plane spacing estimates made using linearized data. Another major source of bias in plane spacing estimates was the number of planes, Nz, used to calculate the normalization factors (averages of brightness and squared brightness). Optimum Nz was found to be 5 to 10 planes, depending on plane spacing.

Paper Details

Date Published: 23 May 2003
PDF: 12 pages
Proc. SPIE 5035, Medical Imaging 2003: Ultrasonic Imaging and Signal Processing, (23 May 2003); doi: 10.1117/12.479965
Show Author Affiliations
Wendy Lani Smith, London Regional Cancer Ctr. (Canada)
Aaron Fenster, John P. Robarts Research Institute (Canada)

Published in SPIE Proceedings Vol. 5035:
Medical Imaging 2003: Ultrasonic Imaging and Signal Processing
William F. Walker; Michael F. Insana, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?