Share Email Print

Proceedings Paper

Development of transducer arrays for ultrasound-computer tomography
Author(s): Rainer Stotzka; Georg Gobel; Klaus Schlote-Holubek
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Ultrasound computer-tomography (USCT) is a novel ultrasound imaging method capable of producing volume images with both high spatial and temporal resolution. Several thousand ultrasound transducers are arranged in a cylindrical array around a tank containing the object to be examined coupled by water. Every single transducer is small enough to emit an almost spherical sound-wave. While one transducer is transmitting, all others receive simultaneously. Our experimental setup, using only a few transducers simulating a ring-shaped geometry, showed even nylon threads (0.1 mm) with an image quality superior to clinical in-use ultrasound scanners. In order to build a complete circular array several thousand transducers, with cylindrical sound field characteristics, are needed. Since such transducer arrays are hardly available and expensive, we developed inexpensive transducer arrays consisting of 8 elements. Each array is based on a plate of lead titanate zirconate ceramics (PZT) sawn into 8 elements of 0.3 mm width, 3.8 mm height and 0.5 mm pitch. Each element has a mean frequency of 3.8 MHz and can be triggered separately. The main challenge was the development of production steps with reproducible results. Our transducer arrays show only small variances in the sound field characteristics which are strongly required for ultrasound tomography.

Paper Details

Date Published: 23 May 2003
PDF: 8 pages
Proc. SPIE 5035, Medical Imaging 2003: Ultrasonic Imaging and Signal Processing, (23 May 2003); doi: 10.1117/12.479964
Show Author Affiliations
Rainer Stotzka, Forschungszentrum Karlsruhe (Germany)
Georg Gobel, Forschungszentrum Karlsruhe (Germany)
Klaus Schlote-Holubek, Forschungszentrum Karlsruhe (Germany)

Published in SPIE Proceedings Vol. 5035:
Medical Imaging 2003: Ultrasonic Imaging and Signal Processing
William F. Walker; Michael F. Insana, Editor(s)

© SPIE. Terms of Use
Back to Top