Share Email Print

Proceedings Paper

Combined approach of shell and shear-warp rendering for efficient volume visualization
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In Medical Imaging, shell rendering (SR) and shear-warp rendering (SWR) are two ultra-fast and effective methods for volume visualization. We have previously shown that, typically, SWR can be on the average 1.38 times faster than SR, but it requires from 2 to 8 times more memory space than SR. In this paper, we propose an extension of the compact shell data structure utilized in SR to allow shear-warp factorization of the viewing matrix in order to obtain speed up gains for SR, without paying the high storage price of SWR. The new approach is called shear-warp shell rendering (SWSR). The paper describes the methods, points out their major differences in the computational aspects, and presents a comparative analysis of them in terms of speed, storage, and image quality. The experiments involve hard and fuzzy boundaries of 10 different objects of various sizes, shapes, and topologies, rendered on a 1GHz Pentium-III PC with 512MB RAM, utilizing surface and volume rendering strategies. The results indicate that SWSR offers the best speed and storage characteristics compromise among these methods. We also show that SWSR improves the rendition quality over SR, and provides renditions similar to those produced by SWR.

Paper Details

Date Published: 30 May 2003
PDF: 12 pages
Proc. SPIE 5029, Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display, (30 May 2003); doi: 10.1117/12.479765
Show Author Affiliations
Alexandre Xavier Falcao, Univ. de Campinas (Brazil)
Leonardo M. Rocha, Univ. de Campinas (Brazil)
Jayaram K. Udupa, Univ. of Pennsylvania (United States)

Published in SPIE Proceedings Vol. 5029:
Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display
Robert L. Galloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?