Share Email Print

Proceedings Paper

Tool for automatic real-time regional cardiac function analysis using HARP
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The FastHARP magnetic resonance pulse sequence can acquire taggged cardiac images at a rate of 45 ms per frame, enabling 7-20 harmonic phase (HARP) images per heartbeat per tag orientation. By switching the tag orientation every heartbeat, data from just two heartbeats can be used to compute in-plane quantities describing myocardial deformation, such as circumferential and radial strain. Standard HARP software, however, requries about one second to compute each strain image, which is not fast enough to keep up with the FastHARP pulse sequence. In this work, we have developed real-time algorithms for HARP processing of tagged MR images. The code was implemented along wiht a visualization tool that runs in conjunction with the FastHARP pulse sequence. HARP strain computations and display can now be carried out in real-time after a one heartbeat delay. The software is also fast enough to track and plot the time profile of strain of one or more points in the myocardium in real-time. Our software has now been integrated into a research testbed for magnetic resonance cardiac stress testing, contributing to the emerging suite of clinical cardiac MRI protocols.

Paper Details

Date Published: 30 May 2003
PDF: 9 pages
Proc. SPIE 5029, Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display, (30 May 2003); doi: 10.1117/12.479763
Show Author Affiliations
Klaled Z. Abd-Elmoniem, Johns Hopkins Univ. (United States)
Smita Sampath, Johns Hopkins Univ. (United States)
Nael F. Osman, Johns Hopkins Univ. (United States)
Jerry L. Prince, Johns Hopkins Univ. (United States)

Published in SPIE Proceedings Vol. 5029:
Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display
Robert L. Galloway Jr., Editor(s)

© SPIE. Terms of Use
Back to Top