Share Email Print

Proceedings Paper

Precision drilling of fused silica with 157-nm excimer laser radiation
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

Paper Details

Date Published: 17 October 2003
PDF: 8 pages
Proc. SPIE 4977, Photon Processing in Microelectronics and Photonics II, (17 October 2003); doi: 10.1117/12.479557
Show Author Affiliations
Thorsten Temme, Laser Zentrum Hannover e.V. (Germany)
Andreas Ostendorf, Laser Zentrum Hannover e.V. (Germany)
Christian Kulik, Laser Zentrum Hannover e.V. (Germany)
Klaus Meyer, Laser Zentrum Hannover e.V. (Germany)

Published in SPIE Proceedings Vol. 4977:
Photon Processing in Microelectronics and Photonics II
Alberto Piqué; David B. Geohegan; Friedrich G. Bachmann; Koji Sugioka; Frank Träger; Jan J. Dubowski; Peter R. Herman; Willem Hoving; Kouichi Murakami; Kunihiko Washio; Jim Fieret, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?