
Proceedings Paper
Feature extraction from multiple data sources using genetic programmingFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Feature extraction from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land cover features including towns, wildfire burnscars, and forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.
Paper Details
Date Published: 2 August 2002
PDF: 8 pages
Proc. SPIE 4725, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, (2 August 2002); doi: 10.1117/12.478765
Published in SPIE Proceedings Vol. 4725:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII
Sylvia S. Shen; Paul E. Lewis, Editor(s)
PDF: 8 pages
Proc. SPIE 4725, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII, (2 August 2002); doi: 10.1117/12.478765
Show Author Affiliations
John J. Szymanski, Los Alamos National Lab. (United States)
Steven P. Brumby, Los Alamos National Lab. (United States)
Paul A. Pope, Los Alamos National Lab. (United States)
Damian R. Eads, Los Alamos National Lab. (United States)
Diana M. Esch-Mosher, Los Alamos National Lab. (United States)
Mark C. Galassi, Los Alamos National Lab. (United States)
Neal R. Harvey, Los Alamos National Lab. (United States)
Steven P. Brumby, Los Alamos National Lab. (United States)
Paul A. Pope, Los Alamos National Lab. (United States)
Damian R. Eads, Los Alamos National Lab. (United States)
Diana M. Esch-Mosher, Los Alamos National Lab. (United States)
Mark C. Galassi, Los Alamos National Lab. (United States)
Neal R. Harvey, Los Alamos National Lab. (United States)
Hersey D.W. McCulloch, Los Alamos National Lab. (United States)
Simon J. Perkins, Los Alamos National Lab. (United States)
Reid B. Porter, Los Alamos National Lab. (United States)
James P. Theiler, Los Alamos National Lab. (United States)
Aaron Cody Young, Los Alamos National Lab. (United States)
Jeffrey J. Bloch, Los Alamos National Lab. (United States)
Nancy A. David, Los Alamos National Lab. (United States)
Simon J. Perkins, Los Alamos National Lab. (United States)
Reid B. Porter, Los Alamos National Lab. (United States)
James P. Theiler, Los Alamos National Lab. (United States)
Aaron Cody Young, Los Alamos National Lab. (United States)
Jeffrey J. Bloch, Los Alamos National Lab. (United States)
Nancy A. David, Los Alamos National Lab. (United States)
Published in SPIE Proceedings Vol. 4725:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII
Sylvia S. Shen; Paul E. Lewis, Editor(s)
© SPIE. Terms of Use
