Share Email Print

Proceedings Paper

Resonance energy of surface plasmon of nickel nanoparticles in silica glasses
Author(s): Hiroshi Amekura; Yoshihiko Takeda; Hideaki Kitazawa; Naoki Kishimoto
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Absorption spectra of Ni nanoparticles in silica glass (SiO2) fabricated by negative-ion implantation of 60 keV Ni to 4x1016 ions/cm2 were determined from three sets of spectra, i.e., transmittance, reflectance of implanted-surface side and that of rear-surface side, of the same samples, to exclude incoherent multiple reflection (ICMR) due to substrates. Although the absorption spectrum of as-implanted state is smeared with defect absorption, two absorption bands at 3.3 and 6.0 eV due to Ni nanoparticles are observed after annealing at 800°C in vacuum. However, a predicted peak energy from a criterion for surface plasmon resonance (SPR), εm'(ω) + 2 εd'(ω) = 0, was in 2.8 eV, far away from the observed peaks. Another criterion, (εm' + 2εd')2 + (εm'')2 = minimum, gives the peak energy of 5.9 eV. From decomposition of the dielectric constants into free- and bound-electron contributions, we conclude that the 3.3 eV peak is SPR-like, although the contribution of the bound-electrons to the 3.3 eV peak is not small. Size dependence also supports the assignment of the 3.3 eV peak. The large contribution of the bound electrons is due to a nature of the partially filled 3d orbitals of Ni. This is contrast to the closed 3d orbitals of Cu, and probably is the origin of the broad peak width.

Paper Details

Date Published: 17 October 2003
PDF: 9 pages
Proc. SPIE 4977, Photon Processing in Microelectronics and Photonics II, (17 October 2003); doi: 10.1117/12.478576
Show Author Affiliations
Hiroshi Amekura, National Institute for Materials Science (Japan)
Yoshihiko Takeda, National Institute for Materials Science (Japan)
Hideaki Kitazawa, National Institute for Materials Science (Japan)
Naoki Kishimoto, National Institute for Materials Science (Japan)

Published in SPIE Proceedings Vol. 4977:
Photon Processing in Microelectronics and Photonics II
Alberto Piqué; David B. Geohegan; Friedrich G. Bachmann; Koji Sugioka; Frank Träger; Jan J. Dubowski; Peter R. Herman; Willem Hoving; Kouichi Murakami; Kunihiko Washio; Jim Fieret, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?