Share Email Print

Proceedings Paper

Internal refractive index changes affect light transport in tissue
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This investigation explores the effect of index of refraction, as an optical property, on light transport through optically turbid media. We describe a model of light propagation that incorporates the influence of refractive index mismatch at boundaries within a domain. We measure light transmission through turbid cylindrical phantoms with different distributions of refractive index. These distributions approximate the heterogeneous, layered nature of biological tissue. Finite element method model calculations of diffuse transmittance through these phantoms show good agreement with the trends observed experimentally. We see that phase measurements of light that propagates through approximately 90 (mm) of scatter-dominated media may vary by 10 degrees depending upon the values of refractive index of the medium. Amplitude measurements are not as sensitive to this parameter as phase. Model calculations of diffuse reflectance from a semi-infinite slab geometry with different layers also shows good agreement with Monte Carlo simulations. We conclude that incorporating refractive index into light transport models may be worthwhile. Applying such a model in tomographic image reconstruction may improve the estimation of optical properties of biological tissues.

Paper Details

Date Published: 29 July 2003
PDF: 9 pages
Proc. SPIE 4955, Optical Tomography and Spectroscopy of Tissue V, (29 July 2003); doi: 10.1117/12.477365
Show Author Affiliations
Ben A. Brooksby, Dartmouth College (United States)
Hamid Dehghani, Dartmouth College (United States)
Karthik Vishwanath, Dartmouth College (United States)
Brian W. Pogue, Dartmouth College (United States)
Keith D. Paulsen, Dartmouth College (United States)

Published in SPIE Proceedings Vol. 4955:
Optical Tomography and Spectroscopy of Tissue V
Britton Chance; Robert R. Alfano; Bruce J. Tromberg; Mamoru Tamura; Eva M. Sevick-Muraca, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?