Share Email Print

Proceedings Paper

Pattern fidelity improvement by considering the underlying patterns at defocus
Author(s): Karl Chiou; Jerry Huang; S. Lee; Chih Yu Lee; Nail Tang; Janet Peng
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The model-based OPC is considered in 0.13um and beyond generation. However, the accuracy of model-based OPC is based on the measurement of test patterns on bare silicon wafers using the optimized exposure condition. The through pitch patterns and systematic patterns should be contained in the test patterns design. Experiments showed that the accuracy of model would be constrained if the underlying pattern effects would not be considered. The CD performance at the defocus and process window would also suffer since not considering the underlying pattern effects. This CD performance at defocus level and process window will be worse at damascene process. In this paper, we propose a hybrid OPC to cover these issues. In this work, we can use a simple method to investigate the underlying impact on the target layer on which we want to implement OPC to improve the pattern fidelity. We can observe the impact of underlying layer by studying the CD of critical patterns at de-focus level. This experiment provides us the CD data for considering the underlying impact without relying on theoretical foundation. With the hybrid OPC, we can find the exposure latitude has been improved

Paper Details

Date Published: 1 August 2002
PDF: 8 pages
Proc. SPIE 4754, Photomask and Next-Generation Lithography Mask Technology IX, (1 August 2002); doi: 10.1117/12.476987
Show Author Affiliations
Karl Chiou, ProMOS Technologies (Taiwan)
Jerry Huang, ProMOS Technologies (Taiwan)
S. Lee, ProMOS Technologies (Taiwan)
Chih Yu Lee, ProMOS Technologies (Taiwan)
Nail Tang, Mentor Graphics Taiwan Ltd. (Taiwan)
Janet Peng, Mentor Graphics Taiwan Ltd. (Taiwan)

Published in SPIE Proceedings Vol. 4754:
Photomask and Next-Generation Lithography Mask Technology IX
Hiroichi Kawahira, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?