Share Email Print

Proceedings Paper

Studies of cochlear outer hair cell membrane mechanics using optical tweezers
Author(s): David R Murdock; Sergey A. Ermilov; William E. Brownell; Bahman Anvari
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An optical tweezers system was used to study the mechanical characteristics of outer hair cell (OHC) and human embryonic kidney (HEK) cell plasma membranes. The effect of the cationic amphipath chlorpromazine (CPZ) on the equilibrium tethering force, (Feq) force relaxation time constant,(τ) and effective membrane viscosity (ηeff) was measured. The Feq for the OHC lateral wall plasma membrane was ~60 pN and was unchanged by addition of CPZ. A significantly greater τ value was observed in CPZ-treated OHCs (30.5 ± 12.6 s) than in control OHCs (19.0 ± 13.2 s). The Feq and τ values for control HEK cells were >60% lower than the respective OHC values but increased by ~3 times following CPZ addition. Effective viscosity ranged between 1.49-1.81 pN•s/μm for CPZ-treated OHCs. This represents a decrease from reported control OHC membrane viscosities.

Paper Details

Date Published: 12 September 2003
PDF: 8 pages
Proc. SPIE 4949, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIII, (12 September 2003); doi: 10.1117/12.476469
Show Author Affiliations
David R Murdock, Rice Univ. (United States)
Sergey A. Ermilov, Rice Univ. (United States)
William E. Brownell, Baylor College of Medicine (United States)
Bahman Anvari, Rice Univ. (United States)

Published in SPIE Proceedings Vol. 4949:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIII
Eugene A. Trowers M.D.; Lawrence S. Bass M.D.; Udayan K. Shah M.D.; Reza S. Malek M.D.; David S. Robinson M.D.; Kenton W. Gregory M.D.; Lawrence S. Bass M.D.; Abraham Katzir; Nikiforos Kollias; Hans-Dieter Reidenbach; Brian Jet-Fei Wong M.D.; Timothy A. Woodward M.D.; Werner T.W. de Riese; Keith D. Paulsen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?