Share Email Print

Proceedings Paper

Laser resistance of fused silica for microlithography: experiments and models
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Laser resistance of fused silica, used as lens material in DUV microlithography, is one of the keys to long-term high-level optical performance of steppers and scanners. The exposure of fused silica to high energy excimer laser pulses over long periods of time modifies the material in several different ways: the optical absorption increases due to laser-induced formation of color centers; the density of the material changes due to structural relaxation and formation of (beta) -hydroxyl (SiOH); and finally the index of refraction changes due to a photorefractive effect. All of these effects affect the imaging quality of illuminator systems and projection lenses, hence the need for fundamental understanding and modeling.

Paper Details

Date Published: 30 July 2002
PDF: 8 pages
Proc. SPIE 4691, Optical Microlithography XV, (30 July 2002); doi: 10.1117/12.474564
Show Author Affiliations
Johannes Moll, Corning Inc. (United States)
Paul G. Dewa, Corning Tropel Corp. (United States)

Published in SPIE Proceedings Vol. 4691:
Optical Microlithography XV
Anthony Yen, Editor(s)

© SPIE. Terms of Use
Back to Top