Share Email Print

Proceedings Paper

Novel strategy for wafer-induced shift (WIS)
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Alignment error that originates in the actual wafer process is one of the factors that deteriorates total overlay accuracy. This error is known as wafer induced shift (WIS). WIS occurs through a change of alignment mark topography during the actual wafer processing. To reduce this error, we propose a tool that will simulate an alignment offset generated by WIS. We have called this tool the Alignment Offset Analyzer. The Alignment Offset Analyzer consists of a profiler for measuring the alignment mark topography and a simulator that simulates the alignment offset. By using the Alignment Offset Analyzer, we simulate the alignment signals from a Tungsten chemical mechanical polishing (CMP) wafer. The simulated alignment signals have an asymmetric shape due to the wafer processing. With these signals, the alignment offset caused by WIS can be estimated prior to the exposure sequence.

Paper Details

Date Published: 30 July 2002
PDF: 9 pages
Proc. SPIE 4691, Optical Microlithography XV, (30 July 2002); doi: 10.1117/12.474477
Show Author Affiliations
Koichi Sentoku, Canon Inc. (Japan)
Takahiro Matsumoto, Canon Inc. (Japan)
Hideki Ina, Canon Inc. (Japan)

Published in SPIE Proceedings Vol. 4691:
Optical Microlithography XV
Anthony Yen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?