Share Email Print

Proceedings Paper

DETECT2000: an improved Monte Carlo simulator for the computer-aided design of photon sensing devices
Author(s): Francois Cayouette; Denis Laurendeau; Christian Moisan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We introduce a new version of DETECT. DETECT is a Monte-Carlo simulator developed for the Computer Aided Design (CAD) of optical photon sensing devices. The simulator generates individual emission photons in specified locations of a photon-emitting device and tracks their passage and interactions in active and passive components of the system. Extensive options are available in the simulator to model the geometry of the photon sensing device, to account for the time and wavelength distribution of emission photons, to track their interactions with surfaces, to account for their possible absorption and re-emission by a wave-shifting components and to model their detection by pixelated photomultipliers or photodiodes. DETECT2000 is a very significant upgrade of DETECT97, which has long been established in the nuclear medicine instrumentation community for its accuracy to model the performances of high resolution energy and position sensitive gamma-ray detectors. The 2000 version of DETECT offers an accelerated version of the simulator which has been redesigned in the object-oriented C++ language. New features such as the tracking of the time and wavelength history of individual optical photons have been added.

Paper Details

Date Published: 17 February 2003
PDF: 8 pages
Proc. SPIE 4833, Applications of Photonic Technology 5, (17 February 2003); doi: 10.1117/12.474315
Show Author Affiliations
Francois Cayouette, McGill Univ. (Canada)
Denis Laurendeau, Laval Univ. (Canada)
Christian Moisan, Laval Univ. (Canada)

Published in SPIE Proceedings Vol. 4833:
Applications of Photonic Technology 5
Roger A. Lessard; George A. Lampropoulos; Gregory W. Schinn, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?