Share Email Print

Proceedings Paper

Optimal placement of semi-active joints in large-space truss structures
Author(s): Jan Wirnitzer; A. Kistner; Lothar Gaul
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The low structural damping of large space structures and the stringent positioning requirements in missions demand effective vibration suppression. The semi-active approach at hand is based on friction damping due to interfacial slip in semi-active joints which can be controlled by varying the normal pressure in the contact area using a piezo-disc actuator. This paper focuses on the optimal placement of semi-active joints for vibration suppression. The proposed method uses optimality criteria for actuator and sensor locations based on eigenvalues of the controllability and observability gramians. It is stated as a nonlinear multicriteria optimization problem with discrete variables which is solved by a stochastic search algorithm. As final step in the design procedure, parameters of the local feedback controllers assigned to each adaptive joint are optimized with respect to transient response of the structure. The present method is applied to a 10-bay truss structure. Simulation runs of the controlled structure are used to verify the optimization results.

Paper Details

Date Published: 27 June 2002
PDF: 12 pages
Proc. SPIE 4697, Smart Structures and Materials 2002: Damping and Isolation, (27 June 2002); doi: 10.1117/12.472660
Show Author Affiliations
Jan Wirnitzer, Univ. Stuttgart (Germany)
A. Kistner, Univ. Stuttgart (Germany)
Lothar Gaul, Univ. Stuttgart (Germany)

Published in SPIE Proceedings Vol. 4697:
Smart Structures and Materials 2002: Damping and Isolation
Gregory S. Agnes, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?