Share Email Print

Proceedings Paper

Morphometric comparison of the acute rabbit corneal response to 1540-nm laser light following in-vitro exposure to millisecond or nanosecond pulse widths
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Significant damage to rabbit corneal tissue was produced by a single pulse, in vitro exposure of 1540 m infrared laser light operating in either millisecond or nanosecond pulse widths. Millisecond pulse widths of infrared laser light produced a marked coagulative necrosis of both the corneal epithelium and stroma. We also noted histologic alterations in the stromal matrix within the beam path that we interpreted as matrix remodeling. To test this interpretation, we used an indirect immunohistochemical procedure to detect Matrix Metalloproteinase-2 (MMP-2) activity. Immunohistochemistry revealed that the MMP-2 reaction was mostly limited to the margins of the beam path. In addition, the MMP-2 reaction was less intense than expected given the significant tissue changes observed in the histologic sections. Exposure of rabbit corneal tissue to the nanosecond pulse widths produced a less severe coagulative necrosis of the tissue when compared to the millisecond exposures. However, a markedly stronger immunohistochemical pattern than would have been predicted from the histologic sections was observed, with approximately half of the beam path filled with MMP-2 reaction product. These data suggest an association between infrared laser pulse width and the degree of extracellular matrix remodeling in rabbit corneal tissue.

Paper Details

Date Published: 27 June 2002
PDF: 4 pages
Proc. SPIE 4617, Laser Tissue Interaction XIII: Photochemical, Photothermal, and Photomechanical, (27 June 2002); doi: 10.1117/12.472541
Show Author Affiliations
Thomas E. Eurell, Univ. of Illinois/Urbana-Champaign (United States)
Thomas E. Johnson, Uniformed Services Univ. of the Health Sciences (United States)
William P. Roach, Uniformed Services Univ. of the Health Sciences (United States)

Published in SPIE Proceedings Vol. 4617:
Laser Tissue Interaction XIII: Photochemical, Photothermal, and Photomechanical
Steven L. Jacques; Donald Dean Duncan; Donald Dean Duncan; Sean J. Kirkpatrick; Sean J. Kirkpatrick; Andres Kriete; Andres Kriete, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?