Share Email Print

Proceedings Paper

G protein-coupled receptor (GPCR) microarrays
Author(s): Ye Fang; Anthony G. Frutos; Joydeep Lahiri
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

G protein-coupled receptors (GPCRs) are the largest family of cell surface proteins involved in transmitting extracellular signals to the interior of the cell. These membrane-spanning proteins constitute one of the most important families of drug targets. Despite their importance, the power and utility of microarray technology has not been extended to GPCRs or other membrane proteins because of issues due to immobilization - these proteins typically need to be embedded in membrane environment to maintain their native conformations. This paper describes the fabrication of GPCR microarrays by conventional robotic pin-printing and demonstrates straightforward assays for screening of ligands on these arrays. GPCRs, obtained as membrane preparations form cell lines over-expressing particular GPCRs, were arrayed using a quill-pin printer. The arrays were incubated with solutions of labeled cognate ligands and unlabeled compounds, and imaged using a fluorescence scanner. The assays conducted were designed to test: (i) the specificity of ligand binding among different families of GPCRs; (ii) the selectivity of ligand binding and inhibition among different members of a GPCR family; (iii) the affinity of ligand binding. The results showed highly selective binding of ligands to arrays of receptors, with affinities similar to those reported in the literature and obtained suing other techniques. This demonstration of membrane-protein arrays and associated assays overcomes a fundamental limitation in protein microchip technology - the lack of practical microarray based methods for membrane proteins.

Paper Details

Date Published: 21 June 2002
PDF: 5 pages
Proc. SPIE 4626, Biomedical Nanotechnology Architectures and Applications, (21 June 2002); doi: 10.1117/12.472073
Show Author Affiliations
Ye Fang, Corning Inc. (United States)
Anthony G. Frutos, Corning Inc. (United States)
Joydeep Lahiri, Corning Inc. (United States)

Published in SPIE Proceedings Vol. 4626:
Biomedical Nanotechnology Architectures and Applications
Raymond P. Mariella Jr.; Michelle Palmer; Darryl J. Bornhop; Darryl J. Bornhop; Ramesh Raghavachari; Shuming Nie; Ramesh Raghavachari; Catherine J. Murphy; David A. Dunn; David A. Dunn; Raymond P. Mariella Jr.; Catherine J. Murphy; Dan V. Nicolau; Shuming Nie; Michelle Palmer; Ramesh Raghavachari, Editor(s)

© SPIE. Terms of Use
Back to Top