
Proceedings Paper
Laser beam and optics characterization with Z-scan methodFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
We report about applications of nonlinear optical processes for laser beam and optics characterization. The basic mechanism of the measurements consists in scanning a thin film of a liquid crystal in the focal region of a laser beam and processing the self-phase modulation signal. This technique allows precise and quick determination of the focal waist position and radius, which, in conjunction with the parameters of the focusing system allows determination of the laser beam divergence. We have demonstrated the capabilities of the technique for measuring submicron waist sizes and characterizing astigmatic optical systems. The technique is applicable to short laser pulses. The measurements were performed using the device implementation of the technique, the Crystal Scan Optical Multimeter.
Paper Details
Date Published: 30 May 2003
PDF: 12 pages
Proc. SPIE 4932, Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, (30 May 2003); doi: 10.1117/12.472036
Published in SPIE Proceedings Vol. 4932:
Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization
Gregory J. Exarhos; Adolf Giesen; Arthur H. Guenther; Norbert Kaiser; Keith L. Lewis; Horst Weber; M. J. Soileau; Christopher J. Stolz, Editor(s)
PDF: 12 pages
Proc. SPIE 4932, Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization, (30 May 2003); doi: 10.1117/12.472036
Show Author Affiliations
Published in SPIE Proceedings Vol. 4932:
Laser-Induced Damage in Optical Materials: 2002 and 7th International Workshop on Laser Beam and Optics Characterization
Gregory J. Exarhos; Adolf Giesen; Arthur H. Guenther; Norbert Kaiser; Keith L. Lewis; Horst Weber; M. J. Soileau; Christopher J. Stolz, Editor(s)
© SPIE. Terms of Use
