Share Email Print

Proceedings Paper

Design of a new controller to treat the obstructive sleep apnea
Author(s): Thomas Netzel
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The obstructive sleep apnoea (OSA) is a sleep related breathing disorder caused by a relaxation of the upper airway structure during the sleep that leads to a complete closure of the upper airway. The most successful therapy is the nasal continuous positive airway pressure (nCPAP) treatment that keeps the airway opened. More recent devices use an automatic adaptation of the applied pressure. Either the forced oscillation technique (FOT) or the evaluation of the inspiration flow contour are used to evaluate the severity of obstructions. Both methods have disadvantages that may lead to wrong applied pressures. Based on the precise measurement of airflow and mask pressure during nCPAP with a Weinmann SOMNOsmart and additional polysomnography a new parameter set is presented that uses the advantage of both methods to detect the obstructive sleep apnoea. To evaluate the applicability of this parameter set to control Auto-nCPAP-devices a fuzzy-controller is designed under MATLAB/Simulink using an A/D-D/A-converter to control the blower of the SOMNOsmart during Auto-nCPAP-therapy. Obstructive events are detected and treated with a rise of nCPAP-pressure depending on the inspiratory flow requirement. The pressure is lowered after the end of flow limited phases. Although temporary low pressures no oxygen desaturation is recognized by the pulse oxymeter.

Paper Details

Date Published: 11 June 2002
PDF: 8 pages
Proc. SPIE 4702, Smart Nondestructive Evaluation for Health Monitoring of Structural and Biological Systems, (11 June 2002); doi: 10.1117/12.469892
Show Author Affiliations
Thomas Netzel, Univ. of Federal Armed Forces (Germany)

Published in SPIE Proceedings Vol. 4702:
Smart Nondestructive Evaluation for Health Monitoring of Structural and Biological Systems
Tribikram Kundu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?