Share Email Print

Proceedings Paper

Hybrid-integrated optical isolators and circulators
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Magneto-optics is an area that is uniquely enabling for the production of nonreciprocal components such as optical isolators and circulators. The concepts behind the nonreciprocity include nonreciprocal polarization rotation (Faraday rotation) and nonreciprocal phase shift. A magneto- optic material that is magnetized in the direction of propagation of light acts as a Faraday rotator. An asymmetric magneto-optic waveguide that is magnetized perpendicular to the propagation direction acts as a nonreciprocal phase shifter. Both effects can be utilized to realize nonreciprocal devices. Today, commercial isolators and circulators are strictly bulk components, and as such they constitute the only type of optical component that is not available in integrated form. However, the technology for integrated nonreciprocal devices has been maturing and is expected to have a considerable impact in the communication industry by enabling the integration of complete optical subsystems. We report on the development of integrated optical isolators and circulators that consist of polymer-based planar interferometers with inserted thin films of cerium-substituted Yttrium Iron Garnet (Ce-YIG) for efficient Faraday rotation, and thin films of LiNbO3 for wave-retarders that enable polarization-independent operation.

Paper Details

Date Published: 3 June 2002
PDF: 9 pages
Proc. SPIE 4652, Optoelectronic Interconnects, Integrated Circuits, and Packaging, (3 June 2002); doi: 10.1117/12.469582
Show Author Affiliations
Junichiro Fujita, Telephotonics, Inc. (United States)
Reinald Gerhardt, Telephotonics, Inc. (United States)
Louay A. Eldada, Telephotonics, Inc. (United States)

Published in SPIE Proceedings Vol. 4652:
Optoelectronic Interconnects, Integrated Circuits, and Packaging
Louay A. Eldada; John R. Rowlette Sr.; Randy A. Heyler; Randy A. Heyler; John R. Rowlette Sr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?