Share Email Print

Proceedings Paper

Configurational resonances phenomena in optical scattering spectroscopy of nano-objects
Author(s): Sergey G. Moiseev
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The light scattering from a nano-sized object formed by two or three dipole atoms (polarizable components) is studied in detail using a microscopic approach. The atoms are considered to be linear Lorenz oscillators interacting via the electromagnetic field only. For simple configuration of nano-object, the self-consistent electromagnetic problem is solved analytically. It is shown that the near-field interaction between the dipole atoms can give rise to a dramatic modification of the polarizing characteristics of atoms and the total polarizability of nano-object. We point out the existence of a number of resonance peaks in the frequency dependences. The shift of resonance peaks from the position of the resonances corresponding to the isolated atoms depends mainly on the interatomic distances and can significantly exceed the natural linewidth. Generally, the resonance characteristics of atoms depend on various system parameters such as the atomic polarizabilities (i.e. the eigenfrequencies), the number of atoms, and the interatomic distances. The scattered light intensity detected in wave zone is shown to depend essentially on the configuration of nano-object, the light frequency, polarization, and direction of external wave.

Paper Details

Date Published: 29 May 2002
PDF: 10 pages
Proc. SPIE 4748, ICONO 2001: Fundamental Aspects of Laser-Matter Interaction and Physics of Nanostructures, (29 May 2002); doi: 10.1117/12.468980
Show Author Affiliations
Sergey G. Moiseev, Military Communications Univ. (Russia)

Published in SPIE Proceedings Vol. 4748:
ICONO 2001: Fundamental Aspects of Laser-Matter Interaction and Physics of Nanostructures
Anatoly V. Andreev; Pavel A. Apanasevich; Vladimir I. Emel'yanov; Alexander P. Nizovtsev, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?