Share Email Print
cover

Proceedings Paper

Crack detection in beams by wavelet analysis
Author(s): Lixin Zhang; Zheng Li; Xianyue Su
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, the wavelet transform is applied to the time- frequency analysis of the flexural waves in beams for crack detection. Here, a cantilever beam with edge cracks is used for a model to analyze the wave information after it is loaded an impact hammer on its free end. The flexural waves propagating in beams are dispersive and can be measured directly by using electrical-resistance strain gauges during the dynamic process. According to the data about one-crack and two-crack beams, we utilize the Morlet wavelet transform to decompose the flexural waves into each frequency component in time domain. The experimental results illustrate that the crack position can be detected exactly by means of the signal of mid-frequency flexural wave extracted by wavelet transform. The method is also suitable for determining the existence and location of multi-crack in a beam.

Paper Details

Date Published: 29 May 2002
PDF: 4 pages
Proc. SPIE 4537, Third International Conference on Experimental Mechanics, (29 May 2002); doi: 10.1117/12.468829
Show Author Affiliations
Lixin Zhang, Peking Univ. (China)
Zheng Li, Peking Univ. (China)
Xianyue Su, Peking Univ. (China)


Published in SPIE Proceedings Vol. 4537:
Third International Conference on Experimental Mechanics
Xiaoping Wu; Yuwen Qin; Jing Fang; Jingtang Ke, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray