
Proceedings Paper
Frozen-intensity test research of frozen coal with steelFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
As a sort of multiple component, and dispersed state granule aggregation, frozen coal behaves similar to frozen soil. On the basis of its unique ice-cementation effect and not-frozen water along with dynamical balance state between the frameworks of mineral granule, the mechanical behavior of frozen coal is more complex than usual in compact medium, restrictedly with force amount, process time period and temperature. In all factors which impact on frozen intensity of frozen coal frozen with steel plate, water content is relatively easy to control. From results of this test research, values of frozen intensity is changeable under different water content. Up to the critical water content, the value of frozen intensity increase rapidly till a certain steady value. Under a certain temperature and water content condition, the granule component of frozen coal has somewhat effect on the frozen intensity. Usually, the frozen intensity of large granule coal is greater than the small granule's However, the distributing of coal granule size present a steady probability rule. So the effect from granule size is tiny.
Paper Details
Date Published: 29 May 2002
PDF: 4 pages
Proc. SPIE 4537, Third International Conference on Experimental Mechanics, (29 May 2002); doi: 10.1117/12.468789
Published in SPIE Proceedings Vol. 4537:
Third International Conference on Experimental Mechanics
Xiaoping Wu; Yuwen Qin; Jing Fang; Jingtang Ke, Editor(s)
PDF: 4 pages
Proc. SPIE 4537, Third International Conference on Experimental Mechanics, (29 May 2002); doi: 10.1117/12.468789
Show Author Affiliations
Xiaopeng Zhang, Dalian Univ. of Technology (China)
Cheng Huang, Dalian Univ. of Technology (China)
Cheng Huang, Dalian Univ. of Technology (China)
Weibo Liu, Dalian Univ. of Technology (China)
Published in SPIE Proceedings Vol. 4537:
Third International Conference on Experimental Mechanics
Xiaoping Wu; Yuwen Qin; Jing Fang; Jingtang Ke, Editor(s)
© SPIE. Terms of Use
