Share Email Print

Proceedings Paper

Next generation of spaceborne rain radars: science rationales and technology status
Author(s): Eastwood Im; Stephen L. Durden; Ramesh K. Kakar; Christian D. Kummerow; Eric A. Smith
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Global rainfall is the primary distributor of latent heat through atmospheric circulation. This important atmospheric parameter can only be measured reliably from space. The on-going Tropical Rainfall Measuring Mission (TRMM) is the first space based mission dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided exciting, new data on the 3-D rain structures for a variety of scientific applications. The continuous success of TRMM has led to new development of the next generation of spaceborne satellites and sensors for global rainfall and hydrological parameter measurements. From science and cost efficiency prospective, these new sensing instruments are expected to provide enhanced capabilities and reduced consumption on the spacecraft resources. At NASA, the Earth Science Enterprise has strengthened its investment on instrument technologies to help achieving these two main goals and to obtain the best science values from the new earth science instruments. It is with this spirit that a notional instrument concept, using a dual-frequency rain radar with a deployable 5-meter electronically-scanned membrane antenna and real-time digital signal processing, is developed. This new system, the Second Generation Precipitation Radar (PR-2), has the potential of offering greatly enhanced performance accuracy while using only a fraction of the mass of the current TRMM PR. During the last two years, several of the technology items associated with this notional instrument have also been prototyped. In this paper, the science rationales, the instrument design concept, and the technology status for the PR-2 notional system will be presented.

Paper Details

Date Published: 30 April 2003
PDF: 12 pages
Proc. SPIE 4894, Microwave Remote Sensing of the Atmosphere and Environment III, (30 April 2003); doi: 10.1117/12.467759
Show Author Affiliations
Eastwood Im, Jet Propulsion Lab. (United States)
Stephen L. Durden, Jet Propulsion Lab. (United States)
Ramesh K. Kakar, NASA Headquarters (United States)
Christian D. Kummerow, Colorado State Univ. (United States)
Eric A. Smith, NASA Goddard Space Flight Ctr. (United States)

Published in SPIE Proceedings Vol. 4894:
Microwave Remote Sensing of the Atmosphere and Environment III
Christian D. Kummerow; JingShang Jiang; Seiho Uratuka, Editor(s)

© SPIE. Terms of Use
Back to Top