Share Email Print

Proceedings Paper

Toward an analytical solution for 3D SPECT reconstruction with nonuniform attenuation and distance-dependent resolution variation: a Monte Carlo simulation study
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Based on Kunyansky's and our previous work, an efficient, analytical solution to the reconstruction problem of myocardial perfusion SPECT has been developed that allows simultaneous compensation for non-uniform attenuation, scatter, and system-dependent resolution variation, as well as suppression of signal-dependent Poisson noise. To avoid reconstructed images being corrupted by the presence of Poisson noise, a Karhunen-Loeve (K-L) domain adaptive Wiener filter is applied first to suppress the noise in the primary- and scatter-window measurements. The scatter contribution to the primary-energy-window measurements is then removed by our scatter estimation method, which is energy spectrum based, modified from the triple-energy-window acquisition protocol. The resolution variation is corrected by the depth-dependent deconvolution, which, being based on the central-ray approximation and the distance-frequency relation, deconvolves the scatter-free data with the accurate detector-response kernel in frequency domain. Finally, the deblurred projection data are analytically reconstructed with non-uniform attenuation by an algorithm based on Novikov's explicit inversion formula. The preliminary Monte Carlo simulation results using a realistic human thoracic phantom demonstrate that, for parallel-beam geometry, the proposed analytical reconstruction scheme is computationally comparable to filtered backprojection and quantitatively equivalent to iterative maximum a posteriori expectation-maximization reconstruction. Extension to other geometries is under progress.

Paper Details

Date Published: 9 May 2002
PDF: 9 pages
Proc. SPIE 4684, Medical Imaging 2002: Image Processing, (9 May 2002); doi: 10.1117/12.467168
Show Author Affiliations
Hongbing Lu, SUNY/Stony Brook (United States)
Junhai Wen, SUNY/Stony Brook (United States)
Xiang Li, SUNY/Stony Brook (United States)
Tianfang Li, SUNY/Stony Brook (United States)
Guoping Han, SUNY/Stony Brook (United States)
Zhengrong Liang, SUNY/Stony Brook (United States)

Published in SPIE Proceedings Vol. 4684:
Medical Imaging 2002: Image Processing
Milan Sonka; J. Michael Fitzpatrick, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?