Share Email Print

Proceedings Paper

Coherent Doppler lidar system for airborne measurement: a ground-based experiment of atmospheric wind profiling
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An eyes-safe, airborne, coherent Doppler lidar (CDL) system has been developed at the Communications Research Laboratory (CRL). It consists of a 2-mm laser transmitter, a receiver, a heterodyne detector, a scanning device, and signal processing equipments. The main objective of the development of this CDL system is to demonstrate the feasibility of CDL from a moving platform. The second objective is to develop a computational algorithm for calculating wind velocity and wind direction. The performance of the CDL was evaluated by a ground-based experiment on wind profiling. That is, zonal, meridional, and vertical wind profiles were obtained by the CDL and by the velocity-azimuth display (VAD) technique with a height resolution of 150 m for every 20 minutes. These profiles were compared with the wind profiles measured by the WindProfiler (WP) installed at CRL. Although the temporal and vertical resolution measured by the CDL differed slightly from that by the WP, the calculated horizontal wind velocity measured by the CDL corresponded well with the WP calculations. It is thus concluded that the developed computational algorithm provides valid calculations of wind velocity.

Paper Details

Date Published: 21 March 2003
PDF: 8 pages
Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, (21 March 2003); doi: 10.1117/12.466074
Show Author Affiliations
Shoken Ishii, Communications Research Lab. (Japan)
Kohei Mizutani, Communications Research Lab. (Japan)
Masahiko Sasano, Communications Research Lab. (Japan)
Toshikasu Itabe, Communications Research Lab. (Japan)
Kazuhiro Asai, Tohoku Institute of Technology (Japan)

Published in SPIE Proceedings Vol. 4893:
Lidar Remote Sensing for Industry and Environment Monitoring III
Upendra N. Singh; Toshikasu Itabe; Zhishen Liu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?