Share Email Print

Proceedings Paper

Simulation model to analyze the scatter radiation effects on breast cancer diagnosis by CAD system
Author(s): Ricardo Toshiyuki Irita; Annie France Frere; Hiroshi Fujita
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

One of factors that more affect the radiographic image quality is the scatter radiation produced by interaction between the x-ray and the radiographed object. Recently the Computer Aided Diagnosis (CAD) Systems are coming to aid the detection of breast small details. Nevertheless, we not sure how much the scatter radiation decrease the efficiency of this systems. This work presents a model in order to quantify the scatter radiation and find it relation between CAD's results used for the microcalcification detection. We simulated scatter photons that reaches the film and we added it to the mammography image. The new images were processed and the alterations of the CAD's results were analyzed. The information loss to breast composed by 80 percent adipose tissue was 0,0561 per each centimeter increased in the breast's thickness. We calculated these same data considering a proportion variation of adipose tissue and considering the breast composition of 90 percent and 70 percent the loss it would be of 0.0504 and 0.07559 per increased cm, respectively. We can increase the wanted scattered radiation to any image with its own characteristics and analyze the disturbances that it can bring to the visual inspection or the automatic detection (CAD system) efficiently.

Paper Details

Date Published: 3 May 2002
PDF: 10 pages
Proc. SPIE 4682, Medical Imaging 2002: Physics of Medical Imaging, (3 May 2002); doi: 10.1117/12.465629
Show Author Affiliations
Ricardo Toshiyuki Irita, Univ. de Sao Paulo (Brazil)
Annie France Frere, Univ. de Sao Paulo and Univ. de Mogi das Cruzes (Brazil)
Hiroshi Fujita, Gifu Univ. (Japan)

Published in SPIE Proceedings Vol. 4682:
Medical Imaging 2002: Physics of Medical Imaging
Larry E. Antonuk; Martin Joel Yaffe, Editor(s)

© SPIE. Terms of Use
Back to Top